AI-assisted modelling of heat-related mortality in Germany
Action | Key |
---|---|
Play / Pause | K or space |
Mute / Unmute | M |
Toggle fullscreen mode | F |
Select next subtitles | C |
Select next audio track | A |
Toggle automatic slides maximization | V |
Seek 5s backward | left arrow |
Seek 5s forward | right arrow |
Seek 10s backward | shift + left arrow or J |
Seek 10s forward | shift + right arrow or L |
Seek 60s backward | control + left arrow |
Seek 60s forward | control + right arrow |
Seek 1 frame backward | alt + left arrow |
Seek 1 frame forward | alt + right arrow |
Decrease volume | shift + down arrow |
Increase volume | shift + up arrow |
Decrease playback rate | < |
Increase playback rate | > |
Seek to end | end |
Seek to beginning | beginning |
Partager ce média
Liens de téléchargement
Flux vidéo HLS
Vous pouvez utiliser un lecteur externe pour lire le flux (comme VLC).
Flux vidéo HLSSi vous êtes abonné aux notifications, un e-mail vous sera envoyé pour toutes les annotations ajoutées.
Votre compte utilisateur n'a pas d'adresse e-mail.
Informations sur ce média
[VIDEO PUBLIQUE – Visible pour toutes et tous]
Abstract:
Heat has become a leading cause of preventable deaths during summer. Understanding the link between high temperatures and excess mortality is crucial for designing effective prevention and adaptation plans. Yet, data analyses are challenging due to non-linear heat-mortality dynamics and oftentimes fragmented data archives over different agglomeration levels.
We introduced a multi-scale machine learning model to estimate heat-related mortality with variable temporal and spatial resolution. This approach allows us to estimate heat-related mortality at different scales, such as regional heat risk during a specific heatwave, annual and nationwide heat risk, or future heat risk under climate change. Using Germany as a case study, we estimated heat-related mortality risks at district level and visualized local health risks during a selected heatwave.
Speaker:
Dr. Christopher Irrgang
Mathematician and Earth system researcher with a specialization in artificial intelligence. During the last years, he has continuously broadened his research areas, connecting climate, social, and life sciences through process- and data-driven approaches. Currently, he is responsible for an interdisciplinary research team of ten members at the graduate to postdoctoral level. Besides the scientific work, he is taking part in the structural and administrative build-up of the Centre for Artificial Intelligence in Public Health Research (ZKI-PH), which is the newest department of the Robert Koch Institute (RKI). Over the period of one year, they have recruited around 40 scientific members (PhD students, PostDocs, group leads) in four research units. They are focusing their work on current challenges in public health systems and future pandemic preparedness.
Date: 20/08/2024
Ce colloque vous est proposé par le Département épidémiologie et systèmes de santé (DESS) d'Unisanté. Retrouvez toutes les informations sur les colloques passés et futurs sur www.unisante.ch/colloques-dess.
Autres médias dans la chaîne "Colloque du DESS"
3 vues, 3 cette année, 3 ce moisColloque DESS - « Periurbanisation and the changing geography of mortality in Switzerland since 1966 »-20250610 1130-1.mp412 juin 2025
7 vues, 7 cette année, 4 ce moisSoins oncologiques vus par les patientes et patients: enseignements de SCAPE5 juin 2025
3 vues, 3 cette annéeDoes Healthcare Deliver?27 mai 2025
3 vues, 3 cette annéeRéseaux bayésiens et analyse complexe des risques - applications potentielles dans le domaine de la santé1 mai 2025
5 vues, 5 cette annéeNutrition durable: une perspective de santé publique3 avril 2025
3 vues, 3 cette année, 2 ce moisMesurer la qualité de vie des personnes âgées: développement et applications du questionnaire Older people Quality of Life-7 domains (OQoL-7)3 avril 2025